Chainette

On se donne un cable de poids ω N par m.

Le segment [OP] (P(x,y)) du cable est soumis aux forces: \overrightarrow{H} , constante due à [OQ], \overrightarrow{T} , tension de OP et \overrightarrow{W} , poids de OP.

Puisque OP est en équilibre, la somme des composantes horizontales de ces forces et la somme de leurs composantes verticales sont nulles.

D'où : $T\cos\alpha = H$, $T\sin\alpha = W$ et ainsi $tg \alpha = \frac{dy}{dx} = \frac{W}{H}$.

Notant s la longueur de OP, on a W=ωs et donc :

 $\frac{d^2y}{dx^2} = \frac{1}{H} \frac{dW}{dx} = \frac{\omega}{H} \frac{ds}{dx} = \frac{\omega}{H} \sqrt{1 + (dy/dx)^2} \qquad (\text{ rectification de OP })$

Posant p = dy/dx, il vient : $\frac{dp}{dx} = \frac{\omega}{H} \sqrt{1 + p^2}$, soit : $\frac{dp}{\sqrt{1 + p^2}} = \frac{\omega}{H} dx$.

 $\int_0^P \frac{du}{\sqrt{1+u^2}} = \int_0^x \frac{\omega}{H} \, du \; , \qquad \text{argsh } p = \frac{\omega}{H} \, x \qquad , \quad p = \frac{dy}{dx} = \text{sh } \frac{\omega}{H} \, x$

 $dy = sh \frac{\omega}{H} x dx$, $\int_0^y du = \int_0^x sh \frac{\omega}{H} u du$, $y = \frac{H}{\omega} \left(ch \left(\frac{\omega}{H} x \right) - 1 \right)$,

équation d'une chainette.

